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Introduction and Motivation

▪ Battery costs are declining.
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Given favorable market conditions, policies 
and customer willingness, should an LSE invest 
in grid-scale batteries or the control of flexible 

loads (residential HVACs and water heaters) 
for multiple services?

Widely available

▪ Traditionally dormant demand-side of the grid is becoming more active due
to various technological advancements and increasing energy awareness.

▪ Policies supporting participation of DERs in wholesale markets are gaining
more traction e.g. FERC Order 841, FERC Order 2222 etc.

▪ Load Serving Entities (LSE) can use batteries and flexible loads for multiple
services simultaneously.



Services of Interest

Peak Shaving Energy Arbitrage Frequency Regulation
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• Well studied and 
established concept

• Directed at reducing 
electricity demand during 
peak hours

• Results in reduced 
capacity charges for an 
LSE within a competitive 
market environment

• Similar to peak shaving
• Increases consumption 

(or charges storage) 
when prices are low

• Reduces energy 
consumption (or 
discharges storage) when 
prices are high

• Results in reduced energy 
costs for LSE

• Balances electricity 
supply and demand in 
real time

• Most electricity markets 
have regulation markets

• Batteries and 
aggregations of flexible 
loads can participate

• Provides attractive extra 
renumeration for LSE



Methodology
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Step 1: Establish capacity of flexible loads and grid-scale battery storage system
using a cost-based equivalence approach.

𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑠𝑡 = 𝑁𝐻𝑉𝐴𝐶 𝑁𝐸𝑊𝐻 +𝑀𝐻𝑉𝐴𝐶 + 𝑁𝐸𝑊𝐻 𝐸𝐸𝑊𝐻 +𝑀𝐸𝑊𝐻 + 𝑃𝐷𝐸𝑊𝐻 𝑃𝑟,𝐸𝑊𝐻

+ 𝑃𝐷𝐻𝑉𝐴𝐶 𝑃𝑟,𝐻𝑉𝐴𝐶

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑠𝑦𝑠𝑡𝑒𝑚 𝑠𝑖𝑧𝑒 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙 𝐶𝑜𝑠𝑡

𝜆𝑏𝑎𝑡𝑡. 𝑠𝑦𝑠𝑡𝑒𝑚

Step 2: Use novel mathematical optimization model to estimate annual profits
from energy arbitrage and frequency regulation for each option (i.e.
grid-scale battery and flexible loads) based on historical demand and
electricity market price data.

Where 𝑁𝐻𝑉𝐴𝐶(𝐸𝑊𝐻) = number of HVACs/water heaters, 𝐸𝐻𝑉𝐴𝐶(𝐸𝑊𝐻) = equipment costs, 𝑀𝐻𝑉𝐴𝐶(𝐸𝑊𝐻)= marketing costs,

𝑃𝐷𝐻𝑉𝐴𝐶(𝐸𝑊𝐻)= program development costs and 𝑃𝑟,𝐻𝑉𝐴𝐶(𝐸𝑊𝐻) = unit power rating, 𝜆𝑏𝑎𝑡𝑡. 𝑠𝑦𝑠𝑡𝑒𝑚= battery system unit cost

Step 3: Estimate annual capacity charge savings from peak shaving depending on
the wholesale market environment. Add to results from Step 2

Step 4: Use NPV analysis (and results from Step 3) to establish equivalent worth
over the lifetime of each option (i.e. grid-scale battery and flexible loads)



Methodology – Optimization Model Structure
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𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 [𝐿𝑆𝐸′𝑠 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐿𝑆𝐸′𝑠 𝐶𝑜𝑠𝑡𝑠 𝑖𝑛𝑐𝑙𝑢𝑑𝑖𝑛𝑔 𝑐𝑢𝑠𝑡𝑜𝑚𝑒𝑟 𝑐𝑜𝑚𝑝𝑒𝑛𝑠𝑎𝑡𝑖𝑜𝑛𝑠 ]

𝑃𝑒𝑎𝑘 𝑆ℎ𝑎𝑣𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝐻𝑉𝐴𝐶 𝑈𝑛𝑖𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑒𝑑 𝑊𝑎𝑡𝑒𝑟 𝐻𝑒𝑎𝑡𝑒𝑟 𝑈𝑛𝑖𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ A generic form of the novel optimization model for estimating annual profits
for the flexible load option is as shown below.

▪ For efficient computation, the residential HVAC units are grouped into
different clusters and the thermal dynamics for the units within a cluster is
represented by an equivalent HVAC model. A similar approach is also used for
the water heating units.

▪ The optimization model is solved for each day of the year.



Methodology – Optimization Model Structure
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▪ A generic form of the novel optimization model for estimating annual profits
for the grid-scale battery option is as shown below

▪ Customer compensation functions are not included in the model because the
battery is owned by the LSE.

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐿𝑆𝐸′𝑠 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝐿𝑆𝐸′𝑠 𝐶𝑜𝑠𝑡𝑠

𝑃𝑒𝑎𝑘 𝑆ℎ𝑎𝑣𝑖𝑛𝑔 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝐸𝑛𝑒𝑟𝑔𝑦 𝐴𝑟𝑏𝑖𝑡𝑟𝑎𝑔𝑒 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑅𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

𝐵𝑎𝑡𝑡𝑒𝑟𝑦 𝑆𝑡𝑜𝑟𝑎𝑔𝑒 𝑆𝑦𝑠𝑡𝑒𝑚 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑡𝑠

▪ The optimization model is also solved for each day of the year.



Case Study - Parameters
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▪ The case study focuses on a hypothetical LSE operating within the New York
City (N.Y.C) load zone of the NYISO wholesale market environment.

▪ Demand data was generated using the GridLAB-D software and electricity 
market prices (energy and regulation prices) were obtained from NYISO.

▪ Some of the parameters for the case study are shown in the table below.

*Values obtained from [7]. 
**Values obtained from [8]. Five battery system cost scenarios were 

considered. 

Parameters Value Parameters Value

𝑁𝐻𝑉𝐴𝐶 42 (single cluster) 𝑃𝑟,𝐸𝑊𝐻 4.5 kW

𝑁𝐸𝑊𝐻 42 (single cluster) 𝑃𝑟,𝐻𝑉𝐴𝐶 4.2 kW

𝑀𝐻𝑉𝐴𝐶/𝐸𝑊𝐻 $25/participant* Initial Cost $28,248

𝐸𝐸𝑊𝐻 $315/unit* 𝜆𝑏𝑎𝑡𝑡. 𝑠𝑦𝑠𝑡𝑒𝑚 ($/kWh)** 325, 300, 275, 250 and 200

𝐸𝐻𝑉𝐴𝐶 $215/unit* Battery sys. capacity  (kWh) 87, 94, 103, 113 and 141

𝑃𝐷𝐸𝑊𝐻 $12/kW* Flexible loads capacity (kW) 365

𝑃𝐷𝐻𝑉𝐴𝐶 $9/kW* Life span (years) 5 for battery; 10 for flexible loads



Case Study - Results
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Conclusions
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▪ For the hypothetical LSE considered, the control of flexible loads is the best
option considering a 10-year life span.

▪ Average annual compensation for each flexible load is approximately $310
which is significantly higher than existing DSM programs.

▪ The developed optimization model and proposed approach can be employed
by any other LSE interested in conducting a similar analysis.

▪ As battery costs decline, the total revenue from using battery storage
resources for multiple services will increase.

▪ Both control of flexible loads and grid-scale storage options provide more
annual profits for the hypothetical LSE when compared with the base case.

▪ Longer life span of flexible loads compared to batteries is a major factor.
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