

The WILLIAM STATES LEE COLLEGE of ENGINEERING

Comparison Between Grid-Scale Batteries and Flexible Loads for Combined Value-Added Services

Akintonde Abbas and Badrul Chowdhury Energy Production & Infrastructure Center (EPIC)

University of North Carolina at Charlotte, Charlotte, NC 28223

Introduction and Motivation

- Battery costs are declining.
- Traditionally dormant demand-side of the grid is becoming more active due to various technological advancements and increasing energy awareness.
- Policies supporting participation of DERs in wholesale markets are gaining more traction e.g. FERC Order 841, FERC Order 2222 etc.
- Load Serving Entities (LSE) can use batteries and flexible loads for multiple services simultaneously.

Given favorable market conditions, policies and customer willingness, should an LSE invest in grid-scale batteries or the control of flexible loads (residential HVACs and water heaters)

for multiple services?

Widely available

The WILLIAM STATES LEE COLLEGE of ENGINEERING INC CHARLOTTE

Services of Interest

Peak Shaving

Energy Arbitrage

Frequency Regulation

- Well studied and established concept
- Directed at reducing electricity demand during peak hours
- Results in reduced capacity charges for an LSE within a competitive market environment

- Similar to peak shaving
- Increases consumption (or charges storage) when prices are low
- Reduces energy consumption (or discharges storage) when prices are high
- Results in reduced energy costs for LSE

- Balances electricity supply and demand in real time
- Most electricity markets have regulation markets
- Batteries and aggregations of flexible loads can participate
- Provides attractive extra renumeration for LSE

Methodology

Step 1: Establish capacity of flexible loads and grid-scale battery storage system using a cost-based equivalence approach.

 $\begin{aligned} \text{Initial Cost} &= N_{HVAC}(N_{EWH} + M_{HVAC}) + N_{EWH}(E_{EWH} + M_{EWH}) + PD_{EWH}(P_{r,EWH}) \\ &+ PD_{HVAC}(P_{r,HVAC}) \\ &\text{Battery system size} = \frac{\text{Initial Cost}}{\lambda_{batt. system}} \end{aligned}$

Where $N_{HVAC(EWH)} = number$ of HVACs/water heaters, $E_{HVAC(EWH)} = equipment$ costs, $M_{HVAC(EWH)} = marketing$ costs, $PD_{HVAC(EWH)} = program development costs and P_{r,HVAC(EWH)} = unit power rating, <math>\lambda_{batt. system} = battery system unit cost$

Step 2: Use novel mathematical optimization model to estimate annual profits from energy arbitrage and frequency regulation for each option (i.e. grid-scale battery and flexible loads) based on historical demand and electricity market price data.

Step 3: Estimate annual capacity charge savings from peak shaving depending on the wholesale market environment. Add to results from Step 2

Step 4: Use NPV analysis (and results from Step 3) to establish equivalent worth over the lifetime of each option (i.e. grid-scale battery and flexible loads)

• The WILLIAM STATES LEE COLLEGE of ENGINEERING UNC CHARLOTTE

Methodology – Optimization Model Structure

 A generic form of the novel optimization model for estimating annual profits for the flexible load option is as shown below.

Maximize [LSE's Revenue - LSE's Costs (including customer comper	isations)]
	Peak Shaving Constraints	
subject to -	Energy Arbitrage Constraints	
	Frequency Regulation Constraints	
	Aggregated HVAC Unit Dynamics Constraints	
	Aggregated Water Heater Unit Dynamics Constraints	

- The optimization model is solved for each day of the year.
- For efficient computation, the residential HVAC units are grouped into different clusters and the thermal dynamics for the units within a cluster is represented by an equivalent HVAC model. A similar approach is also used for the water heating units.

Methodology – Optimization Model Structure

 A generic form of the novel optimization model for estimating annual profits for the grid-scale battery option is as shown below

- Customer compensation functions are not included in the model because the battery is owned by the LSE.
- The optimization model is also solved for each day of the year.

Case Study - Parameters

- The case study focuses on a hypothetical LSE operating within the New York City (N.Y.C) load zone of the NYISO wholesale market environment.
- Demand data was generated using the GridLAB-D software and electricity market prices (energy and regulation prices) were obtained from NYISO.
- Some of the parameters for the case study are shown in the table below.

Parameters	Value	Parameters	Value
N _{HVAC}	42 (single cluster)	$P_{r,EWH}$	4.5 kW
N _{EWH}	42 (single cluster)	$P_{r,HVAC}$	4.2 kW
M _{HVAC/EWH}	\$25/participant*	Initial Cost	\$28,248
E_{EWH}	\$315/unit*	$\lambda_{batt.system}$ (\$/kWh)**	325, 300, 275, 250 and 200
E _{HVAC}	\$215/unit*	Battery sys. capacity (kWh)	87, 94, 103, 113 and 141
PD_{EWH}	\$12/kW*	Flexible loads capacity (kW)	365
PD _{HVAC}	\$9/kW*	Life span (years)	5 for battery; 10 for flexible loads

*Values obtained from [7]. **Values obtained from [8]. Five battery system cost scenarios were considered.

Case Study - Results

Scenarios

Loads

The WILLIAM STATES LEE COLLEGE of ENGINEERING UNC CHARLOTTE

Conclusions

- Both control of flexible loads and grid-scale storage options provide more annual profits for the hypothetical LSE when compared with the base case.
- For the hypothetical LSE considered, the control of flexible loads is the best option considering a 10-year life span.
- Longer life span of flexible loads compared to batteries is a major factor.
- Average annual compensation for each flexible load is approximately \$310 which is significantly higher than existing DSM programs.
- As battery costs decline, the total revenue from using battery storage resources for multiple services will increase.
- The developed optimization model and proposed approach can be employed by any other LSE interested in conducting a similar analysis.

Bibliography

- Energy Information Administration, "Battery storage in the US: an update on market trends," July 2020, EIA. [Online]. Available: 1. https://www.eia.gov/analysis/studies/electricity/batterystorage/pdf/battery_storage.pdf
- M. Liu, S. Peeters, D. S. Callaway and B. J. Claessens, "Trajectory Tracking With an Aggregation of Domestic Hot Water Heaters: 2. Combining Model-Based and Model-Free Control in a Commercial Deployment," in IEEE Transactions on Smart Grid, vol. 10, no. 5, pp. 5686-5695, Sept. 2019.
- D. Wu, C. Jin, P. Balducci and M. Kintner-Meyer, "An energy storage assessment: Using optimal control strategies to capture multiple 3. services," 2015 IEEE Power & Energy Society General Meeting, Denver, CO, 2015, pp. 1-5, doi: 10.1109/PESGM.2015.7285820.
- Y. Shi, B. Xu, D. Wang and B. Zhang, "Using Battery Storage for Peak Shaving and Frequency Regulation: Joint Optimization for 4. Superlinear Gains," in IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 2882-2894, May 2018
- D. Krishnamurthy, C. Uckun, Z. Zhou, P. Thimmapuram and A. Botterud, "Energy storage arbitrage under day-ahead and real-time 5. price uncertainty", IEEE Trans. Power Syst., vol. 33, no. 1, pp. 84-93, Jan 2018.
- A. O. Abbas and B. H. Chowdhury, "Using customer-side resources for market-based transmission and distribution level grid services 6. - A review," Int. Journal of Elect. Power & Ener. Sys., vol. 125, Feb. 2021.
- Bonneville Power Administration, "Demand Response Potential in Bonneville Power Administration's Public Utility Service Area 7. Final Report," March 2018, BPA. [Online]. Available: https://www.bpa.gov/EE/Technology/demandresponse/Documents/180319_BPA_DR_Potential_Assessment.pdf
- W. Cole and A. W. Frazier, "Cost projections for utility-scale battery storage", Jun. 2019. 8.
- N. Lu, "An Evaluation of the HVAC Load Potential for Providing Load Balancing Service," in IEEE Transactions on Smart Grid, vol. 9. 3, no. 3, pp. 1263-1270, Sept. 2012
- A. Abbas and B. Chowdhury, "A Data-Driven Approach for Providing Frequency Regulation with Aggregated Residential HVAC 10. Units," 2021 North American Power Symposium (NAPS), Wichita, KS, USA, 2021
- M. Liang, Y. Meng, N. Lu, D. Lubkeman and A. Kling, "HVAC Load Disaggregation using Low-resolution Smart Meter Data," 2019 11. IEEE PES Innovative Smart Grid Technologies Conference (ISGT), Washington, DC, 2019.
- NYISO, 2020. [Online]. Available: https://www.nyiso.com/energy-market-operational-data 12.
- "PJM historical regulation market data.", 2019, [online] Available: http://www.pjm.com/markets-and-operations/ancillary-13. services.aspx.
- D. P. Chassin, J. C. Fuller and N. Djilali, "GridLAB-d: An agent-based simulation framework for smart grids", J. Appl. Math., vol. 14. 2014, pp. 492 320:1-492 320:12, 2014.

